

Colorimetric Determination of Anions on Discrete and Segmented Flow Analyzers

Sarah Leibenguth
Technical Sales & Support Chemist

Methods

- Chloride
- Sulfate
- Phenol
- Ortho-Phosphate

Topics

- Method Principle
- Reagents
- Interferences
- Hardware Requirements
- Additional Considerations

Method Principle

- Color Reagent
 - Contains Mercuric Thiocyanate and Ferric Nitrate
- Chloride
 - Displaces Thiocyanate in Mercuric Thiocyanate
- Free Thiocyanate Reacts with Ferric Ion Present
 - Forms Colored Ferric Thiocyanate Complex

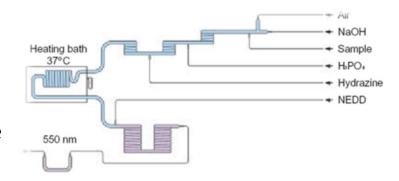
- Combined Chloride Color Reagent
 - One Reagent Test
 - Stable Prepared Reagent
 - Store in Amber Bottle at Room Temperature
 - Prepare or Purchase

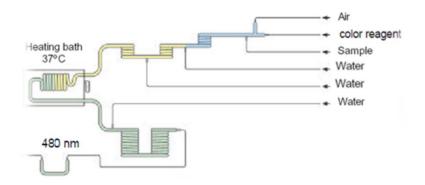
- Prepared Chloride Color Reagent
 - Requires Two Stock Solutions
 - Easy to Prepare
- Purchased Chloride Color Reagent
 - Removes Risk During Preparation
 - Filter Prior to Use

Interferences

- Color and Turbidity
 - Filter Prior to Analysis
 - Software Blanking Feature
- Sulfite and Thiosulfate
 - Reducing Agents
- Bromide and Iodide
 - Positive Interference

Hardware Requirements


- Discrete or Segmented Flow Analyzer
 - 480 nm Filter Required
- No Heating Bath Required



- Color Reagent Stored at Room Temperature
 - Reagent Chiller Off

Hardware Requirements

- Discrete Analyzer
 - Method Added in Software
- Segmented Flow Analyzer
 - Multi-Test Manifold

Additional Considerations

- Waste Disposal
 - Hazardous Waste
 - Isolate Photometer Waste on Flow Analyz
 - Minimal on Discrete Analyzer
 - Isolate Cuvette Waste
 - Waste Treatment
 - Minimize Disposal Cost

Method Principle

- Color Reagent
 - Barium Chloride + Methylthymol Blue → Blue Complex
- Sulfate Displaces Methylthymol Blue to Form Barium Sulfate
 - Blue Color Diminishes
- Excess Methylthymol Blue Forms Grey Color
 - Equivalent to Sulfate Concentration

- Barium Chloride Solution
 - Easy to Prepare
- Color Reagent
 - Prepare Day Prior to Use
 - Store in Amber Bottle
 - Store in Refrigerator

- Sodium Hydroxide Solution
 - Easy to Prepare
 - Stable as Prepared
- EDTA Buffer
 - Recommended System Wash Solution
 - Stable as Prepared

Interferences

- Cations
 - Ion-Exchange Column Included in Method
- Acidic Samples
 - Release Cations in Column
- Color and Turbidity
 - Filter Prior to Analysis

Hardware Requirements

- Segmented Flow Analyzer
 - 460 nm Filter
- No Heat Bath Required
- Ion Exchange Column
 - Preparation Considerations
 - Ion Exchange Resin
 - Avoid Air Entering Column

Method Principle

- Barium Chloride
 - Sulfate + Barium Chloride → Barium Sulfate
- Barium Sulfate Suspension
 - Sodium Chloride + Stabilizer
- Turbidity Measured at 420 nm

- Barium Chloride Crystals
 - Dry Chemical
 - Prepared Reagent
- Conditioning Reagent
 - Hydrochloric Acid
 - Ethanol or Isopropanol
 - Stabilizer

Interferences

- Color and Turbidity
 - Filter Prior to Analysis
- Chloride
- Silica and Polyphosphates
- Aluminum

Hardware Requirements

- Discrete Analyzer
- Hold Reagents at Room Temperature
- Software Capability

Method Principle

- 4-Aminoantipyrine
- Potassium Ferricyanide
 - Alkaline Conditions

OH
$$+$$
 NH_2 $K_3Fe(CN)_8$ $N=C$

- 4-Aminoantipyrine
 - Remake Daily
 - Dry Chemical White in Appearance
 - Prepared Solution is Colorless
 - Store in a Glass Container

- Potassium Ferricyanide
 - Remake Weekly
 - pH Requirements
 - Store in the Refrigerator
 - Store in a Dark Container
 - Store in a Glass Container

Interferences

- Sulfur Compounds
 - pH Sample < 4
 - Aerate Sample
- Oxidizing Agents
 - Negative Interference
 - Ferrous Ammonium Sulfate
- Background Contamination
 - Store Reagents and Standards in Glass

Hardware Requirements

- Discrete Analyzer
 - Method Added in Software
 - Distillation Required
- Segmented Flow Analyzer
 - Multi-Test Manifold
 - 505 or 520 nm Filter
 - Distillation Required

Method Principle

- Ammonium Molybdate
 - Orthophosphate + Molybdate → Phosphomolybdic Acid
- Antimony Potassium Tartrate
 - Catalyst for Phosphomolybdic Acid
- Ascorbic Acid
 - Phosphomolybdic Acid + Ascorbic Acid → Blue Phosphomolybdic Complex

- Ammonium Molybdate
 - Remake Monthly
 - Stored in Plastic Bottle
 - Store in the Refrigerator
 - Prone to Precipitate and Turbidity
 - Dry Chemical White in Appearance

- Sulfuric Acid
 - Stored Indefinitely at Room Temperature
 - Cool Prior to Final Dilution
- Antimony Potassium Tartrate
 - Remake Monthly for Best Results
 - Stored in Glass Container
 - Store in the Refrigerator

- Prepared Color Reagent
 - Add Reagents in Specific Order
 - Sulfuric Acid
 - Antimony Potassium Tartrate
 - Ammonium Molybdate
 - 1 − 3 Week Stability
 - Store in Refrigerator in Plastic Bottle
 - 4 Hour Stability if Ascorbic Acid Added

- Ascorbic Acid Reagent
 - Stable 1 Week
 - Prepare Daily for Best Results
 - Discard if Yellow
 - Expired Reagent Concerns

Interferences

- Nitrite and Hexavalent Chromium
 - Low Concentration Readings
- Arsenate
 - Positive Interference
 - Similar Colorimetric Reaction
- Salt Concentrations
 - Less Than 1% Error for Salt Concentrations up to 20%(w/v)

Interferences

- Iron, Copper, and Silica
 - High Silica Concentrations May Cause Positive Interference
 - 50 mg Fe³⁺/L, 10 mg Cu/L and 10 mg SiO₂/L Tolerated
 - High Iron Concentrations May Cause Precipitation of Phosphorous
- Turbidity
 - Filtration if Applicable

Hardware Requirements

- Discrete Analyzer
 - Method Added in Software
- Segmented Flow Analyzer
 - Multi-Test Manifold
 - 880 or 660 nm Filter

Additional Methods

Anions

- Bromide
- Fluoride
- Nitrite
- Sulfide

- Cyanide
- Iodide
- Nitrate + Nitrite
 - Vanadium Reduction
 - Cadmium Reduction
 - Hydrazine Reduction
 - Enzymatic Reduction

